
Supplementary for MAMo: Leveraging Memory and Attention for Monocular
Video Depth Estimation

Rajeev Yasarla, Hong Cai, Jisoo Jeong, Yunxiao Shi, Risheek Garrepalli, and Fatih Porikli
Qualcomm AI Research*

{ryasarla, hongcai, jisojeon, yunxshi, rgarrepa, fporikli}@qti.qualcomm.com

Contents

1. Architecture Details 1
1.1. NeWCRFs + MAMo . . . . . . . . . . . . . 1
1.2. PixelFormer + MAMo . . . . . . . . . . . . 1
1.3. ResNet-DPT + MAMo . . . . . . . . . . . . 2

2. Training Details 2
2.1. Temporal consistency . . . . . . . . . . . . 2

3. Additional Results 3
3.1. Additional Comparison on KITTI and DDAD 3
3.2. Additional Ablation Studies . . . . . . . . . 3

3.2.1 Token Channels . . . . . . . . . . . 3
3.2.2 Augmentation of Frame Subsampling 3

3.3. Qualitative Results . . . . . . . . . . . . . . 3

4. Optical Flow Estimation Models 4

*Qualcomm AI Research, an initiative of Qualcomm Technologies, Inc.

1. Architecture Details
In this section we explain in more detail how we ap-

ply MAMo to the latest SOTA monocular depth estimation
methods to perform video depth estimation, including Pix-
elFormer [2], NeWCRFs [27], and a strong convolutional
baseline which is a variant of DPT [17] with a ResNet en-
coder (referred to as ResNet-DPT).

1.1. NeWCRFs + MAMo
We apply our proposed MAMo approach to

NeWCRFs [27], and refer to it as NeWCRFs + MAMo. We
use follow same encoder and decoder architectures in [27].
For the encoder, Swin transformer [13] is employed to
extract the features. Pyramid Pooling Module [16] is used
to extract global information. Pairwise potential module
(PPM) head aggregates the global and local information.
For the decoder, Neural Window FC-CRFs modules are
employed to compute depth Dt.1. Since we concatenate
optical flow Ot, the previous frame’s decoder features
Ft−1, and the current frame’s encoder features Et as input
to the decoder, we adjust the input channels of each Neural
FC-CRF module of the decoder accordingly. Fig. 1 shows
a more detailed architectural view of NeWCRFs + MAMo.

Fig. 2 provides an illustration of the Memory Attention
part in MAMo. For self-attention and cross-attention layers
in NeWCRFs + MAMo, we use Neural Window FC-CRFs.

1.2. PixelFormer + MAMo
We apply MAMo to PixelFormer [2] and refer to it as

PixelFormer + MAMo. We use the same architectures
from [2] for the encoder and decoder of PixelFormer +
MAMo. For the encoder, Swin transformer [13] is em-
ployed to extract the features. Pixel Query Initialise (PQI)
is used to extract global information using pyramid spatial
pooling [6], and compute the initial pixel queries Qt. For
the decoder, Skip Attention Modules (SAM) are employed
to compute depth Dt.2 The input channels of SAM modules
are adjusted according to the concatenation of Et, Ft−1 and

1See [27] for more details on Neural Window FC-CRFs
2See [2] for more details on SAM.



Figure 1. Detailed Architecture of NewCRFs + MAMo.

Figure 2. Overview of proposed Memory Attention in MAMo.
For Self-attention and cross-attention, we use Neural FC-CRFs
for NeWCRFs + MAMo, Skip Attention Module (SAM) for Pix-
elFormer + MAMo, and LinFormer for ResNet-DPT + MAMo.

Ot. We use SAM for the self-attention and cross-attention
layers in the Memory Attention of PixelFormer + MAMo.

1.3. ResNet-DPT + MAMo

We apply MAMo to ResNet-DPT [17], and refer to it as
ResNet-DPT + MAMo. For the encoder, ResNet50 [7] is
employed to extract the features. For the decoder, we use
the fusion module from [17] to compute depth Dt. For self-
attention and cross-attention layers in the Memory Atten-
tion of ResNet-DPT + MAMo, we use LinFormer attention
modules [21].

2. Training Details

Detailed training steps are provided in Algorithm 1.
Note, we train the networks PixelFormer, NeWCRFs, and
ResNet-DPT for first 5 epochs without MAMo, and train
PixelFormer+MAMo, NeWCRFs+MAMo, and ResNet-
DPT+MAMo with MAMo for the rest 20 epochs.

Algorithm 1 Training MAMo video depth model
Input: Training dataset DV consisting of training videos and depth
ground truths. For each training video, V = {I0, ..., IT } and Dgt =

{Dgt
0 , ..., Dgt

T }
Model: h(·) and g(·): encoder and full depth network
for every epoch do

for V,Dgt ∈ DV do
Initialization

Q0 ← h(I0), O0 ← 0, F−1 ← 0
Update M0 (repeat Q0 and O0 for L times)
D0 ← g(I0;M0, O0, F−1)

for It, D
gt
t ∈ V,Dgt do

Estimate Ot

Memory Update (Sec. 3.2 in the main paper)
M̃V

t ← {MV
t−1, Qt−1}, M̃D

t ← {MD
t−1, Ot−1}

M̃t ← {M̃V
t , M̃D

t }
Iwt ← Warp(It−1, Ot)

D̃t ← g(It; M̃t, Ot, Ft−1)

D̃w
t ← g(Iwt ; M̃t, Ot, Ft−1)

SILogLoss (D̃t, D̃w
t )

Backpropagation
Update Mt (Eq. 2 in the main paper)

Depth Estimation
Dt ← g(It;Mt, Ot, Ft−1), Qt ← h(It)

Compute Ld between Dt and Dgt
t

(Eq. 5 in the main paper)
Update parameters of h(·), g(·)

end for
end for

end for

2.1. Temporal consistency

We evaluate temporal consistency using the metrics from
Li et al. [10],

aTCt =
1∑

(Kt == 1)
Kt∥

Dt −Dw
t
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]
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where Kt is a depth validity mask, Dt is predicted depth
for It and Dw

t is warped from Dt−1 using optical flow;
we use the latest SOTA FlowFormer [8]. Table 3 shows



Table 1. Quantitative results on KITTI (Eigen split) for distances up to 80 meters. † means methods uses multiple networks to estimate
depth. ManyDepth-FS, and TC-Depth-FS means ManyDepth and TC-Depth are trained in fully-supervised fashion using ground-truths
respectively. MF means multi frame methods, SF means single frame methods, and VD means extending MDE to VDE methods.↑ means
higher the better, and ↓ means lower the better.

Type Method Encoder Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

MF

NeuralRGB [12] CNN based† 0.100 – 2.829 – 0.931 – –
ST-CLSTM [28] Resnet18 0.101 – 4.137 – 0.890 0.970 0.9890
FlowGRU [5] CNN [5] 0.112 0.700 4.260 0.184 0.881 0.962 0.9830
Flow2Depth [25] CNN [14]† 0.081 0.488 3.651 0.146 0.912 0.970 0.9883
RDE-MV [15] ResNet18† 0.111 0.821 4.650 0.187 0.821 0.961 0.9823
Patil et.al. [15] ResNet18†+ConvLSTM 0.102 – 4.148 – 0.884 0.961 0.9824
Cao et.al. [4] – 0.099 – 3.832 – 0.886 0.968 0.9890
STAD [9] CNN † [12] 0.109 0.594 3.312 0.153 0.889 0.971 0.9890
FMNet [22] ResNeXt-101 0.099 – 3.832 0.129 0.886 0.968 0.9893
ManyDepth-FS [23] ResNet50 0.069 0.342 3.414 0.111 0.930 0.989 0.9970
ManyDepth-FS [23] Swin-large 0.060 0.248 2.747 0.099 0.955 0.993 0.9981
TC-Depth-FS [18] ResNet50 0.071 0.330 3.222 0.108 0.922 0.993 0.9970

SF

AdaBins [3] EfficientNet-B5+mViT [20] 0.058 0.190 2.360 0.088 0.964 0.995 0.9991
BinsFormer [11] Swin-large 0.052 0.151 2.098 0.079 0.975 0.997 0.9992
DepthFormer [1] MiT-B4 [24] 0.058 0.187 2.285 0.087 0.967 0.996 0.9991
SwinV2-MIM [26] Swin-large 0.050 0.139 1.966 0.075 0.977 0.998 0.9995
URCDC [19] Swin-large 0.050 0.142 2.032 0.076 0.977 0.997 0.9994

VD

ResNet-DPT ResNet50 0.085 0.383 3.242 0.130 0.913 0.981 0.9960
ResNet-DPT+MAMo (ours) ResNet50 0.071 0.301 2.984 0.121 0.926 0.990 0.9971

NeWCRFs [27] Swin-Base 0.054 0.157 2.140 0.081 0.973 0.997 0.9993
NeWCRFs+MAMo (ours) Swin-Base 0.051 0.149 2.090 0.078 0.976 0.998 0.9994

NeWCRFs Swin-large 0.053 0.154 2.118 0.080 0.974 0.997 0.9994
NeWCRFs+MAMo (ours) Swin-large 0.050 0.141 2.003 0.076 0.977 0.998 0.9994

PixelFormer [2] Swin-large 0.052 0.152 2.093 0.079 0.975 0.997 0.9994
PixelFormer+MAMo (ours) Swin-large 0.049 0.130 1.884 0.072 0.977 0.998 0.9995

Table 2. Quantitative results on DDAD dataset for distances up to
200 meters, and input frame resolution is 1216× 1936.

Method Encoder Sq Rel↓ RMSE↓ δ < 1.25 ↑
ManyDepth-FS [23] Swin-large 4.211 13.899 0.784
SwinV2-MIM[26] Swin-large 3.505 11.641 0.853
NeWCRFs Swin-large 4.041 11.956 0.816
NeWCRFs+MAMo (ours) Swin-large 2.990 10.462 0.867
PixelFormer Swin-large 4.474 12.467 0.802
PixelFormer+MAMo (ours) Swin-large 3.349 11.094 0.870

Table 3. Temporal consistency evaluation on KITTI. We use Swin-
Large encoder for NeWCRFs and NeWCRFs + MAMo.

Metrics ManyDepth TC-Depth NeWCRFs NeWCRFs + MAMo
L=2 L=4 L=6

rTC ↑ 0.920 0.901 0.914 0.952 0.963 0.966
aTC ↓ 0.111 0.122 0.116 0.091 0.088 0.086

that MAMo is more temporally consistency than both the
monocular baseline, as well as SOTA ManyDepth and TC-
Depth.

3. Additional Results
In this section, we provide additional comparison results

with latest, unpublished methods, as well as additional ab-
lation studies.

3.1. Additional Comparison on KITTI and DDAD
In Table 1, we provide a more comprehensive compari-

son that includes latest unpublished methods, such as Swin-
MIM [26] and and URCDC [19] on KITTI.

In Table 2, we further include Swin-MIM [26] in the

comparison on DDAD, where the models are trained on
KITTI and tested on DDAD.

3.2. Additional Ablation Studies
3.2.1 Token Channels
We perform an ablation study for different number of fea-
ture channels in the visual memory tokens. As shown in
Table 4, when using NeWCRFs + MAMo, the model’s ac-
curacy is almost the same for token channels of 256 and
512 (we use 512 in the main paper). This allows one to
improve computational efficiency as needed with slight ac-
curacy drops.

3.2.2 Augmentation of Frame Subsampling
In the paper, we use frame subsampling as an augmentation
when training the video depth model (c.f. Section 3.5 in the
main paper). Table 5 provides an ablation study for not us-
ing and using frame subsampling, with drop rates r equal to
0 and 4, respectively. It can be seen that frame subsampling
leads to lower depth estimation errors, since it allows the
network to see more variety of motion and scene changes.

3.3. Qualitative Results
We provide additional visual results. Figures 3, 4, and 5

show that MAMo considerably improves depth estimation
over baselines PixelFormer and NeWCRFs in several re-
gions: (i) traffic sign and telephone booth in Fig. 3, (ii)
person in Fig. 4, and (iii) railway tracks and car in Fig. 5.



Table 4. Ablation experiment for number of channels in visual
memory token on KITTI dataset. We perform this experiment us-
ing NeWCRFs + MAMo with Swin-Large encoder.

Token
Channels Abs Rel↓ Sq Rel↓ RMSE↓ δ < 1.25 ↑ δ < 1.252 ↑

256 0.050 0.140 2.025 0.977 0.998
512 0.050 0.141 2.003 0.977 0.998

Table 5. Ablation experiment for Frame sampling on KITTI
dataset. We perform this experiment using NeWCRFs + MAMo
with Swin-Large encoder.

Drop Rate Abs Rel↓ Sq Rel↓ RMSE↓ δ < 1.25 ↑ δ < 1.252 ↑
r = 0 0.050 0.142 2.032 0.977 0.998
r = 4 0.050 0.141 2.003 0.977 0.998

4. Optical Flow Estimation Models
We use the official codes and pre-trained checkpoints

from RAFT.3 We use Sintel-trained checkpoint for indoor
scenarios like NYU-Depth V2 and KITTI-trained check-
point for outdoor scenarios like KITTI and DDAD.

3https://github.com/princeton-vl/RAFT
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